Fast Calculate for Evolution Operators

Fu Bin <fubin1991@outlook.com>

June 21, 2016

Introduction 0.1

Suppose we want to calculate an evolution operator multiply a vector, namely,

$$g(\epsilon) = \sum_{n,m} \exp^{i\varepsilon_n t} M_{nm} \exp^{-i\epsilon_m^* t}$$
 (1)

and matrix M can be viewed as a vector. We mark the matrix M as $M = (c_1, c_2, ..., c_n) = \{c\}$. If we calculate this expression at different time and combine them in a vector, we can get this matrix:

$$\mathbf{G}^{<}(\mathbf{t}_{1},\mathbf{t}_{1}) = \sum_{n,m} \exp^{i\varepsilon_{n}t} M_{nm} \exp^{-i\epsilon_{m}^{*}t}$$

$$= \begin{pmatrix} e^{i\varepsilon_{1}} M_{11} e^{-i\epsilon_{1}^{*}} + e^{i\varepsilon_{2}} M_{21} e^{-i\epsilon_{1}^{*}} + \cdots + e^{i\varepsilon_{1}} M_{12} e^{-i\epsilon_{2}^{*}} + \cdots + e^{i\varepsilon_{n}} M_{nm} e^{-i\epsilon_{m}^{*}} \\ e^{2 \times i\varepsilon_{1}} M_{11} e^{-2 \times i\epsilon_{1}^{*}} + e^{2 \times i\varepsilon_{2}} M_{21} e^{-2 \times i\epsilon_{1}^{*}} + \cdots + e^{2 \times i\varepsilon_{1}} M_{12} e^{-2 \times i\epsilon_{2}^{*}} + \cdots + e^{2 \times i\varepsilon_{n}} M_{nm} e^{-2 \times i\epsilon_{m}^{*}} \\ \vdots \\ e^{N_{T} \times i\varepsilon_{1}} M_{11} e^{-N_{T} \times i\epsilon_{1}^{*}} + e^{N_{T} \times i\varepsilon_{2}} M_{21} e^{-N_{T} \times i\epsilon_{1}^{*}} + \cdots + e^{N_{T} \times i\varepsilon_{1}} M_{12} e^{-N_{T} \times i\epsilon_{2}^{*}} + \cdots + e^{N_{T} \times i\varepsilon_{n}} M_{nm} e^{-N_{T} \times i\epsilon_{n}^{*}}$$

If we define A as

$$A = \begin{pmatrix} e^{i\varepsilon_{1}}e^{-i\epsilon_{1}^{*}} & e^{i\varepsilon_{1}}e^{-i\epsilon_{2}^{*}} & \cdots & e^{i\varepsilon_{1}}e^{-i\epsilon_{m}^{*}} \\ e^{i\varepsilon_{2}}e^{-i\epsilon_{1}^{*}} & e^{i\varepsilon_{2}}e^{-i\epsilon_{2}^{*}} & \cdots & e^{i\varepsilon_{2}}e^{-i\epsilon_{m}^{*}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{i\varepsilon_{n}}e^{-i\epsilon_{1}^{*}} & e^{i\varepsilon_{n}}e^{-i\epsilon_{2}^{*}} & \cdots & e^{i\varepsilon_{n}}e^{-i\epsilon_{m}^{*}} \end{pmatrix}$$

$$\equiv \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{11} & A_{22} & \cdots & A_{m} \end{pmatrix}$$

$$(5)$$

$$\equiv \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}$$
 (5)

And finally we can express this equation:

$$\mathbf{G}^{<}(\mathbf{t_l}, \mathbf{t_l}) = \tag{6}$$

$$\begin{pmatrix}
1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
A_{11} & A_{21} & \cdots & A_{n1} & A_{12} & A_{22} & \cdots & A_{n2} & \cdots & A_{nm} \\
A_{11}^{2} & A_{21}^{2} & \cdots & A_{n1}^{2} & A_{12}^{2} & A_{22}^{2} & \cdots & A_{n2}^{2} & \cdots & A_{nm}^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
A_{11}^{N_{T}} & A_{21}^{N_{T}} & \cdots & A_{n1}^{N_{T}} & A_{12}^{N_{T}} & A_{22}^{N_{T}} & \cdots & A_{n2}^{N_{T}} & \cdots & A_{nm}^{N_{T}}
\end{pmatrix}
\begin{pmatrix}
M_{21} \\
\vdots \\
M_{n1} \\
M_{12} \\
M_{22} \\
\vdots \\
M_{n2} \\
\vdots \\
M_{nm}
\end{pmatrix}$$
(7)

In order to speed up this calculation, we need use Vandermonde matrix. The Vandermonde matrix can be express as below

$$\mathbf{V} = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ 1 & a_3 & a_3^2 & \dots & a_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \dots & a_m^{n-1} \end{pmatrix}$$
(8)

By using Vandermonde matrix, we can express equation(1) in transposed Vandermonde matrix. We first defined

$$b \equiv V^t c \tag{9}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ a_1 & a_2 & a_3 & \dots & a_m \\ a_1^2 & a_2^2 & a_3^2 & \dots & a_m^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \dots & a_m^{n-1} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{pmatrix}$$
(10)

$$= \begin{pmatrix} c_1 + c_2 + c_3 + \dots + c_m \\ c_1 a_1 + c_2 a_2 + c_3 a_3 + \dots + c_m a_m \\ c_1 a_1^2 + c_2 a_2^2 + c_3 a_3^2 + \dots + c_m a_m^2 \\ \vdots \\ c_1 a_1^m + c_2 a_2^m + c_3 a_3^m + \dots + c_m a_m^m \end{pmatrix}$$

$$(11)$$

where c is a vector in matrix M.

A direct computation shows that the entries of $b = V_a^t c$ are the first m + 1 coefficients of the Taylor expansion of

$$S(x) = \sum_{j=0}^{m} \frac{c_j}{1 - a_j x} = \sum_{n=0}^{\infty} \sum_{j=0}^{m} c_j (a_j)^n x^n = \sum_{n=0}^{\infty} b_n$$
 (12)

where $b_n = \sum_{j=0}^m c_j(a_j)^n x^n$ and we have used the Taylor expansion

$$\frac{1}{1 - a_j x} = \sum_{k=0}^{\infty} (a_j x)^k \tag{13}$$

If we use Fourier transform, where $x=\omega_{N_T}^l$ and $\omega_{N_T}=\exp^{i\frac{2\pi}{N_T}}$, we can get

$$\bar{S}(l) = \bar{S}(\omega_{N_T}^l) = \sum_{j=0}^{N} \sum_{n=0}^{N_T} c_j(a_j)^n \omega_{N_T}^{nl}$$
(14)

$$= \sum_{n=0}^{N_T} \left(\sum_{j=0}^{N} c_j(a_j)^n \right) \omega_{N_T}^{nl}$$
 (15)

$$= \sum_{j=0}^{N} c_j \frac{1 - \left(a_j \omega_{N_T}^l\right)^{N_T + 1}}{1 - a_j \omega_{N_T}^l} \tag{16}$$

$$= \sum_{j=0}^{N} \frac{c_j}{\left(\frac{1}{\omega_{N_T}}\right)^l - a_j} - \omega_{N_T}^{l(N_T+1)} \sum_{j=0}^{N} \frac{c_j a_j^{N_T+1}}{\left(\frac{1}{\omega_{N_T}}\right)^l - a_j}$$
(17)

$$= \omega_T^{-l} \sum_{j=0}^{N-1} \frac{c_j (1 - a_j^T)}{(1/\omega_T)^l - a_j}$$
 (18)

Now we estimate the computational complexity for $T \leq N$. For FMM we need $\kappa_1 max(T,N)$ operations where κ_1 is about $40\log_2(1/\tau)$ with τ the tolerance. For FFT the computational complexity is at most $\kappa_2 N \log_2 N$ where κ_2 is a coefficient for FFT calculation. To compute $V^t M$ where M has N vectors, we have to calculate $V^t c$ N times. Hence the total computational complexity is $\kappa_1 N^2 + \kappa_2 N^2 \log_2 N$. For $T = N = 10^4$, numerical calculation using FMM and FFT shows that $\kappa_1 N^2$ dominates due to large κ_1 and the speed up factor is about 8 over TN^2 scaling discussed in the main text. In the calculation, FMM costs about 48 seconds and FFT costs about 11 seconds.

For very large T up to $T = N^2$ (if $N = 10^4$ we have $T = 10^8$), we will show that the computational complexity is $\kappa_1 N^2 + 2\kappa_2 N^2 \log_2 N$. In fact, it is easy to see that $I(t_j)$ is the first T coefficients of the Taylor expansion of

$$S(x) = \sum_{n,m=0}^{N-1} \frac{M_{nm}}{1 - a_n a_m^* x}$$
 (19)

$$= \sum_{j=1}^{\infty} \sum_{n,m=0}^{N-1} M_{nm} (a_n a_m^*)^j x^j$$
 (20)

where $a_n = \exp(-i\epsilon_n)$. Now we define two new vectors u and d which have N^2 components with $u^t = (c_0^t, c_1^t, ..., c_{N-1}^t)$ and $d^t = (a_0^*a^t, a_1^*a^t, ..., a_{N-1}^*a^t)$. With the new vectors defined, S(x) is expressed as

$$S(x) = \sum_{j=0}^{N^2 - 1} \frac{u_j}{1 - d_j x} \tag{21}$$

In this new form, the computational complexity is $\kappa_1 N^2 + \kappa_2 N^2 \log_2 N^2$. In this case, for $N = 10^4$ and $T = 10^8$, if we use 10 levels, FMM will take 3116 seconds; if we use 11 levels, FMM will take 4203 seconds. The FFT will take 50 seconds.

0.2Program Summary

0.3**Appendix**

Recalling the discrete Fourier transform and inverse Fourier transform,

$$F(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(n)e^{-2\pi i k n/N}$$
 (22)

$$f(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} F(k) e^{2\pi i k n/N}$$
 (23)

We can find in equation (14), the second equation is the Fourier transform, which is

$$f(n) = \sum_{j=0}^{N} c_j(a_j)^n$$
 (24)

and

$$F(l) = \sum_{n=0}^{N_T} f(n)e^{-2\pi i n l/N_T} = \sum_{n=0}^{N_T} f(n)\omega_{N_T}^{-nl}$$
(25)

$$f(n) = \sum_{l=0}^{N_T} F(l)e^{2\pi i n l/N_T} = \sum_{l=0}^{N_T} F(l)\omega_{N_T}^{nl}$$
(26)

In the equation (14), we can first calculate $\bar{S}(l)$ by the forth equation and then using inverse Fourier transform (26) to get $f(n) = \sum_{j=0}^{N} c_j(a_j)^n$. If we consider evolution operator equation (1), we can get

$$b_n = \sum_{m} \exp^{i\epsilon_m t_n} c_m$$

$$= \sum_{m} \exp^{i\epsilon_m \Delta \cdot n} c_m$$
(27)

$$= \sum_{m} \exp^{i\epsilon_m \triangle \cdot n} c_m \tag{28}$$

$$= \sum_{m} \left(\exp^{i\epsilon_m \Delta} \right)^n c_m \tag{29}$$

$$= \sum_{m} a_{m}^{n} c_{m} \tag{30}$$

So we can get

$$\mathbf{b} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ e^{i\epsilon_1 \triangle} & e^{i\epsilon_2 \triangle} & e^{i\epsilon_3 \triangle} & \dots & e^{i\epsilon_m \triangle} \\ e^{2i\epsilon_1 \triangle} & e^{2i\epsilon_2 \triangle} & e^{2i\epsilon_3 \triangle} & \dots & e^{2i\epsilon_m \triangle} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots & \vdots & \ddots & \vdots \\ e^{ni\epsilon_1 \triangle} & e^{ni\epsilon_2 \triangle} & e^{ni\epsilon_3 \triangle} & \dots & e^{ni\epsilon_m \triangle} \end{pmatrix} . \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{pmatrix}$$
(31)

We have defined a_m and separated time variable $t_n = n \cdot \triangle$, where $n = 1, 2, ..., N_T$.