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0.1 Introduction

Suppose we want to calculate an evolution operator multiply a vector, namely,

and matrix M can be viewed as a vector. We mark the matrix M as M = (¢, ¢a, ..,

n,m

g(e) = Z eXpiant My eXpiiE:”t (1)

cn) = {c}.

If we calculate this expression at different time and combine them in a vector, we can get this matrix:

G~ (tl, tl) =
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g exp’®t M, exp™ “m!
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If we define A as
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And finally we can express this equation:
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In order to speed up this calculation, we need use Vandermonde matrix. The Vandermonde matrix can be

express as below
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By using Vandermonde matrix, we can express equation(1) in transposed Vandermonde matrix. We first defined
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where c is a vector in matrix M.
A direct computation shows that the entries of b = V!c are the first m + 1 coefficients of the Taylor expansion

of
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If we use Fourier transform, where x = wéVT and wy, = exp Nt , we can get
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Now we estimate the computational complexity for T' < N. For FMM we need xk3maz (T, N) operations where
k1 is about 40logy(1/7) with 7 the tolerance. For FFT the computational complexity is at most ko N log, N
where k3 is a coefficient for FFT calculation. To compute V!M where M has N vectors, we have to calculate
Vic N times. Hence the total computational complexity is £ N? + ko N?log, N. For T = N = 10*, numerical
calculation using FMM and FFT shows that x; N2 dominates due to large 1 and the speed up factor is about
8 over TN? scaling discussed in the main text. In the calculation, FMM costs about 48 seconds and FFT costs
about 11 seconds.

For very large T up to T' = N2 (if N = 10* we have T = 10®), we will show that the computational complexity
is k1 N2 + 2K N?log, N. In fact, it is easy to see that I(;) is the first T coefficients of the Taylor expansion of
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where a,, = exp(—ie,). Now we define two new vectors u and d which have N? components with u’ =
(ch,ch, ..., ey ) and d* = (afat,afal, ..., a%_,a'). With the new vectors defined, S(z) is expressed as
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In this new form, the computational complexity is k1 N2+ k2 N2 logy, N2. In this case, for N = 10* and T' = 108,
if we use 10 levels, FMM will take 3116 seconds; if we use 11 levels, FMM will take 4203 seconds. The FFT
will take 50 seconds.

0.2 Program Summary

0.3 Appendix

Recalling the discrete Fourier transform and inverse Fourier transform,
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In the equation(14), we can first calculate S(1) by the forth equation and then using inverse Fourier transform(26)

to get f(n) = Z;‘V:o cj(a;)™.

If we consider evolution operator equation(1),we can get
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So we can get
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We have defined a,, and separated time variable t,, = n - A, where n =1,2, ..., Np.
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